منابع مشابه
Chromatin Remodeling Complexes: The Regulators of Genome Function
Genome in eukaryotes is large enough to be accommodated in tiny nucleus. It is required to achieve high degree of compaction for getting into the nucleus. Compaction is achieved by folding the DNA in the form of chromatin. But chromatin acts as general repressor for the entire genomic functions. Therefore, it requires being selectively unpacked for gene expression. However this packing and unpa...
متن کاملGenome-wide association of Yorkie with chromatin and chromatin-remodeling complexes.
The Hippo pathway regulates growth through the transcriptional coactivator Yorkie, but how Yorkie promotes transcription remains poorly understood. We address this by characterizing Yorkie's association with chromatin and by identifying nuclear partners that effect transcriptional activation. Coimmunoprecipitation and mass spectrometry identify GAGA factor (GAF), the Brahma complex, and the Med...
متن کاملChromatin remodeling and transcriptional regulation.
Extensive studies in the past few years have begun to demonstrate that chromosome structure plays a critical role in transcriptional regulation. Two highly conserved mechanisms for altering chromosome structure have been identified: 1) post-translational modification of histones and 2) adenosine triphosphate (ATP)-dependent chromosome remodeling. Acetylation of histone lysine residues has been ...
متن کاملMechanism of chromatin remodeling.
Results from biochemical and structural studies of the RSC chromatin-remodeling complex prompt a proposal for the remodeling mechanism: RSC binding to the nucleosome releases the DNA from the histone surface and initiates DNA translocation (through one or a small number of DNA base pairs); ATP binding completes translocation, and ATP hydrolysis resets the system. Binding energy thus plays a cen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Genome Biology
سال: 2006
ISSN: 1465-6906
DOI: 10.1186/gb-2006-7-6-319